Projekttitel: Development of an ecological wall system with integrated composite insulation textile and a lightweight steel skeleton for modular prefabricated houses

Partner: Regensburger GmbH

Laufzeit: 03/2018 - 02/2020

Förderträger: Zentrales Innovationsprogramm Mittelstand (ZIM) des Bundesministeriums für Wirtschaft und Energie (BMWi)

Mission Statement

State of the art/challenge
- Prefabricated houses are usually offered "turnkey" and are cheaper than conventional solid construction houses. The low costs are achieved due to a high degree of prefabrication and the use of "inferior" or non-ecological products → low durability, cannot be dismantled (materials cannot be separated after the use phase)
- Prefabricated houses based on a steel skeleton construction are of higher quality and can be dismantled, but there are high deficits in the area of thermal bridges.

Target
- Development of a new wall system based on a filigree and flexible steel skeleton construction and a heat-insulating textile using ecologically high-quality materials.

Development process

State of the art
- Prefabricated timber houses
 - Low service life due to inferior components
 - Disassembly not possible
- Prefabricated steel houses
 - Long service life
 - Demountable
 - Thermal bridges cause energy loss

Approach
- Development of new individual components (steel beams, insulating textiles, plaster systems, etc.)

Target
- Development of a new prefabricated house construction method (new wall system)

Market/relevance
Market volume of the German prefabricated house industry increased by 11.3 % in 2016 → 18.3 billion € turnover
Approach:
The core development goal is the development of a novel, fully recyclable wall system with integrated insulating textile. The wall insulation system should be designed in such a way that it has a low thermal conductivity, a good building material and fire protection class as well as a high moisture resistance. The aim is to achieve a modular design using ecological and environmentally friendly materials. The innovative textile is intended to suppress the cooling effect and thus reduce the overall heat loss of the house. For the realization of the textile structure, a biaxial fabric in combination with a nonwoven, for example, is conceivable. The aim is to achieve a thermal conductivity of 0.10 and heat transfer coefficient of 0.13 to 0.15. Furthermore, a lightweight steel structure is to be developed. The steel skeleton should be constructed in such a way that the walls do not have to be load-bearing. This results in a low weight of the wall system and enables the realization of comparatively light, environmentally friendly prefabricated houses. The system is KfW40/KfW55 eligible for funding.

Acknowledgement
We would like to thank the Federal Ministry of Economics and Energy for funding the research project as part of the Central Innovation Programme (ZIM) for SMEs.

Kontakt
Dr. Andreas Koch
Institut für Textiltechnik der RWTH Aachen University
Otto-Blumenthal-Str. 1
52074 Aachen
Tel.: +49/(0)241/80 234 69
Fax: +49/(0)241 80 224 22
andreas.koch@ita.rwth-aachen.de