Smart Textiles
Textiles with enhanced functionality
Smart Textiles at the ITA

What are Smart Textiles?

Our activities in the Smart Textile sector?

What we have to offer
Smart Textiles respond to the surroundings (DIN/CEN 16298)

Smart Textiles systems consists of 6 component groups

1. Sensors
2. Actuators
3. External communication
4. Internal data transfer
5. Data processing
6. Energy source
Developement of Smart Textiles over time

<table>
<thead>
<tr>
<th>Before</th>
<th>Today</th>
<th>Tomorrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textile and Part</td>
<td>Textile with Part</td>
<td>Textile is Part</td>
</tr>
<tr>
<td>Textile-adapted</td>
<td>Textile-integrated</td>
<td>Textile-based</td>
</tr>
</tbody>
</table>

ScotteVest

www.smarttextiles.de
Smart Textiles at the ITA

What are Smart Textiles?

What are our activities in the Smart Textile sector?

What we have to offer

Technology
Applications
Characterization
Projects

www.smarttextiles.de
What are our technologies for Smart Textiles?

Fiber and thread production
- Extrusion, spinning, plying, coating

Textile production
- Knitting, weaving, braiding, embroidering, sewing

Construction and connection technology
- Soldering, adhesive bonding, crimping
Electrically conducting particles are spun into fibres by means of melt spinning

Melt spinning with industrial and laboratory system:
- Filament production
- Biocomponent fibre production
- Piston spinning plant

Electro spinning under laboratory conditions
Yarn is coated with conductive material

Functionalization of textile surfaces and Yarn

- Electrical and thermal conductivity (metals, CNTs)
- Electrical and thermal isolation
- Corrosion resistance (washability)
- Heating coatings
- Piezoresistive textiles
Electrically conductive textiles are produced by means of conventional textile processes

Knitwear (Knitted fabrics, warp-knitted fabrics)
- Adaptable elasticity
- Dislocation-resistant lattice structure

Woven Narrow Fabrics (Tapes)
- High stiffness of the product
- Perpendicular orientation of conducting fibres

3D textiles (spacer fabric, 3D-fabrics)
- Functional multilayer
- Adaptable separation distance and compressive strength pile yarn

Braids
- Sheath-core-structure
- Braided ropes with conductor tracks and electromagnetic shielding
Versatile conductive yarn structures are realized by embroidering technology

Tailored Fibre Placement (TFP) embroidering machine
- Deployment of fibre material with upper and lower thread on a base textile
- Application and combination of different fibre materials: Carbon, glass, basalt, aramid, natural, thermoplastic und ceramic fibres, as well as metallized yarns

Kettle and moss embroidery machine
- Embroidery head for kettle and moss embroidery
- Automatic yarn change for 6 different yarns

Multi-Head embroidering machine (11 needles)
- Functionalization of textiles by application of electrically conducting fibres and yarns
- Locale enhancement and material combination
- Embroidering of textile electrodes

TFP embroidered stainless steel fibre for heating textiles

Embroidering machine with 3D-TFP fixation device and K-head for kettle and moss embroidering

Embroidered platinum fibre for electro simulation

Textile electrode obtained by moos embroidery
Electrical contacting of textile and electronics must be flexible and robust
Our applications for Smart Textiles

- monitoring
- communication
- illumination
- heating
Health monitoring –
Textile electrodes improve skin compatibility

Measurement of the skin resistance
- Measurement of the body fluid level
- Recording of vital functions

Temperature measurement
- Textile thermocouples made of stainless steel yarn and constantan filaments

Pressure point detection
- Realized by textile switch matrix

Target group
- Elder people, athletes and patients with increased risk
State monitoring of technical textiles—Structural Health Monitoring (SHM)

Sensor for determination of load on rope
- Detection of acting loads and overload by change of electrical resistance

Sensor for wear detection
- Objective assessment and prediction of residual lifetime

Applications
- Safety ropes, mooring lines, parachute lines, elevator ropes

Sensor filament in a braided rope
Contacting of the rope
Textile illumination of interiors and clothing

Use of different lighting components

- Active lighting (organic and inorganic LEDs, luminescent yarn)
- Passive lighting (optical conductor, fluorescent and phosphorescent material)

Extensive and on the spot illumination

Construction of composite structures for lighting textiles

Integration of sensors for the control of the lighting

Optical yarn in spacer fabric

LED on textile

Luminous effect realized by hybrid structure
Smart Textiles for heating applications

Heating materials
- Carbon, CNT-Yarn
- Stainless steel yarn
- Silver coated polyamide yarn
- Copper strands
- PTC material
- Isolated/ non isolated

Thermo sensors
- Usage of yarn with different thermoelectric voltage
 - Silver – Constantan, stainless steel - Constantan

Production process
- Tailored Fiber Placement
- Knitwear
- Weaving
- Printing processes

Test methods
- Thermo images
- Temperature sensors
- Temperature, resistance and stress condition under tensile load
Interface between textile and user

Concepts of interaction with textile
- Textile switch matrix
- Haptic-intuitive input signal via creases
- Proximity and touch sensor

Development of textile bus systems
- Knitting, webbing and weaving of data links

Textile switch matrix and connected conductor tracks
Textile proximity sensor
Input signal via creases
Our testing expertise for Smart Textiles
Testing varies from mechanical, electrical and electro-mechanical methods

Standard test methods e.g.
- Testing of tenacity and elongation
- Washing resistance (standardized washing machine)
- Hardware signal preprocessing (analog, digital)
- Measured value processing

Development of custom testing methods
- Test bed for ropes with integrated monitoring system
- Electrical resistance of textile electrodes
- Durability testing of a textile push-button

Smart Rope testing device
PROJEKT
ALL4REST – Improvement of the quality of sleep by …

Usage of biomaterials

Microencapsulation
- Stents
- Climate regulation with PCM

Warmth regulation
- Textile heating system
- Textile cooling system

Motion and state monitoring (ITA)
- Textile motion sensor
- Textile temperature sensor

Supported by: EU, 7. Program
Run time: 01.01.2011 - 31.12.2013
Project „Technical Textiles for Health and Mobility“

- Development of textile controls
 - Textile switch in vehicle door for window opener
- Textile integrated illumination
 - Active: multi layered textile with integrated LEDs
 - Passive: optical fibers in composite material
- Concept for driver monitoring
- Supported by: Ziel2.NRW
- Run time: 01.01.2010 – 30.09.2012

Roof interior with textile integrated LEDs

Composite material with integrated optical fibres
Project „Profitex – safety technology for firefighters

- Development of a tactical command and deployment system
- Project goal: operating efficiency and safety improvement
- Textile integrated components in firefighter’s jacket (textile bus system)
 - Indoor-navigation, monitoring of the rescue workers ...
- Data transmission (short range: radio; long range: braided security rope with integrated electronic beacons)
- Run time: 01.10.2009 - 30.09.2012
Project „Smart RopEx“ – Ropes indicate when they are worn out

- Development of sensor and analysis procedure for an objective assessment of the residual life time of synthetic ropes in different scenarios:
 - Winch rope
 - Lifting sling
- Creation of a database for removal Criteria in laboratory and practice
- Production and testing of different sensors and connections
- Run time: 01.06.2010 - 31.12.2013
Development and testing facility for innovative textiles in the vehicle interiors: Automotive Interior Center (AIC)

- Centre of competence for automotive interiors in NRW
- Test bed for a systematic determination of the influence of textile components in the interior on the acoustic and thermal perception of comfort
- Assessment of material characteristics for the layout of textiles
 - Textile production chain in laboratory scale
 (AIP: Automotive Interior Prototyping)
 - Representation of the interior textiles in a computer simulation in order to support their development
- Run time: 13.12.2012 - 30.06.2015
Project „Kostbar“ – State monitoring of extensive technical textiles

- Sensors for automatic position identification
 - Position identification of the patient via functionalized evacuation mats
- Sensor for pressure control
 - Pressure sensor made of 3D-spacer fabric for an anti-decubitus monitoring
- Electrical analysis
- Run time: 01.09.2012 – 31.08.2014
Project „Akustikdecke“ – Innovative sound absorber based on coarse fabric

- Development of a coarse fabric with high sound absorption coefficient
- More sustainable and non-polluting production process
- Meeting the customer requirements regarding
 - Washability
 - Manageability and ease of assembly
- Run time: 01.09.2012 - 31.08.2014
Project „POLEOT“ - **Printing of Light-Emitting Devices on Textile**

- Development of a printing process which allows printing of light emitting EL- or OLED layers
- Usage of energy efficient lighting technologies for large-scale applications
- Most important aspect is encapsulation:
 - Minimal environmental influences on the active material
 - High flexibility of the textiles
- Run time: 01.05.2013 - 30.04.2015
Project „Intelligent illuminated jacket“

Jedes einzelne LED ist im RGB-Farbmodus zu programmieren. Text und Muster können angezeigt werden.

USB-Schnittstelle (laden & programmieren)

Lumine
Knoten
Druckknopf (Verbinder)
Textile Leiterbahn
Akku

Lade- schaltung

Verbindungs- band mit textilen Leiterbahnen

LED matrix

Verbindungsbrücke

Textile Leiterbahn

LED Band

Textile Leiterbahn

LED matrix
Project „Intelligent illuminated pillow“

W-LAN Chip
Anschlussstelle

Demo-Kissen mit interaktivem LED-Display

LiPo-Akku mit USB-Anschluss zur Stromversorgung

Aufgesticktes Leiterbahnenetz
Luminet 2-LED-Knoten

Kontaktierte LED-Chip-Matrix
Smart Textiles at the ITA

What are Smart Textiles?

Our activities in the Smart Textile sector?

What we have to offer
Our services for partners and industrial clients

- Design
- Processing
- Application
- Control
Our services for partners and industrial clients

Conceptual design
Sensor development

Control
Technology

Evaluation and stability testing

Product development

Complete production processes
complete systems

production chains
Textile construction- and
and individual processes
connection technology
Smart Textiles and partners
Contact:

Dr.-Ing. Christoph Monfeld

E-Mail: Christoph.Monfeld@ita.rwth-aachen.de
Phone: +49 (0)241 80 232 55